BACCALAURÉAT TECHNOLOGIQUE

SCIENCES ET TECHNOLOGIES INDUSTRIELLES

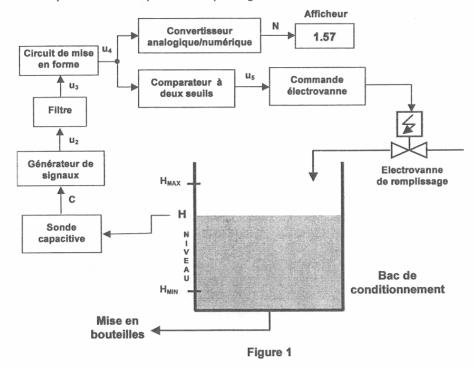
« Génie Électronique»

Session 2007

Épreuve : PHYSIQUE APPLIQUÉE

Durée de l'épreuve : 4 heures Coefficient : 5

L'usage d'une calculatrice est autorisé.


Il est rappelé aux candidats que la qualité de la rédaction, la clarté et la précision des explications entreront dans l'appréciation des copies. Toute réponse devra être justifiée.

MESURE ET REGULATION DE NIVEAU DANS UN BAC DE CONDITIONNEMENT

Dans une chaîne de production de spécialités laitières, le produit laitier est stocké dans un bac de conditionnement avant d'être mis en bouteilles. Dans ce bac, le produit doit être maintenu à un certain niveau pour garantir un remplissage régulier des bouteilles.

Le dispositif proposé ici (voir synoptique figure 1 ci-dessous) effectue la mesure et le contrôle d'un niveau de boisson lactée dans un bac de conditionnement.

Une sonde dite « capacitive » est employée pour la mesure du niveau du fluide. Dans ce système, un afficheur renseigne en permanence les opérateurs sur le niveau du réservoir. Lorsque le niveau descend en dessous d'un certain seuil, la vanne d'arrivée de produit s'ouvre pour le remplissage du bac.

Informations générales:

Tous les composants sont considérés comme parfaits :

- ➤ Les circuits intégrés logiques sont alimentés sous la tension V_{DD} = 12 V. Ils ont une impédance d'entrée infinie et une impédance de sortie nulle. Leur tension de sortie peut être égale à 0 V ou à 12 V.
- ➤ Les amplificateurs opérationnels (ou AO) sont alimentés sous les tensions +V_{CC} = +12 V et -V_{CC} = -12 V. Ils ont une impédance d'entrée infinie et une impédance de sortie nulle. Leurs tensions de saturation sont égales à -12 V ou à +12 V.
- Les diodes sont supposées idéales.

Toutes les parties sont indépendantes à l'exception de la synthèse. Les documents réponses 1 à 3 sont à rendre avec la copie.

A. Étude de la sonde capacitive

La sonde capacitive est assimilable à un condensateur cylindrique.

Une tige métallique cylindrique plongée au centre de la cuve forme la première armature du condensateur (voir figure 2 ci-dessous). Cette tige est recouverte d'une mince couche d'isolant (téflon). La cuve, également métallique et cylindrique, joue le rôle de deuxième armature.

Le condensateur ainsi formé possède une capacité C qui dépend du niveau de produit laitier.

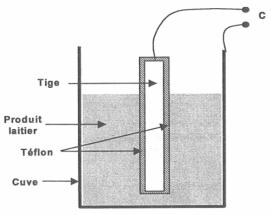


Figure 2

Détermination de C:

Le niveau H de liquide permet de décomposer, en première approximation, le condensateur cylindrique en deux condensateurs comme le montre la figure 3 cidessous :

- Un condensateur de capacité C₁ dont le diélectrique est seulement le téflon, le liquide étant conducteur et en contact avec la cuve.
- Un condensateur de capacité C₂ dont le diélectrique est principalement de l'air, l'épaisseur du téflon étant négligeable.

La capacité totale C du condensateur est obtenue par la relation : $C = C_1 + C_2$

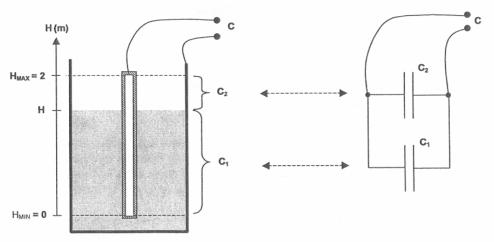


Figure 3

Calcul de la capacité d'un condensateur cylindrique

La capacité C_X (en farad) d'un condensateur cylindrique a pour expression :

$$C_{x} = \varepsilon_{0} \varepsilon_{R} \frac{2\pi L}{ln\left(\frac{d_{2}}{d_{1}}\right)}$$

en désignant par :

 ε_0 = 8,85 pF/m : la permittivité du vide,

 ϵ_R : la permittivité relative du diélectrique,

L: la hauteur du condensateur (en mètres),

d₁: le diamètre de l'armature intérieure (en mètres),

d₂ : le diamètre intérieur de l'armature extérieure (en mètres).

ln désigne la fonction logarithme népérien.

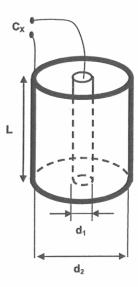


Figure 4

A.1. Étude du condensateur de capacité C1:

La tige de diamètre $d_1 = 10$ mm correspond à l'armature intérieure de ce condensateur. Le diélectrique est formé par le téflon ($\epsilon_R = 2$) d'épaisseur 1 mm. Le liquide conducteur en contact avec la cuve métallique réduit alors le diamètre intérieure de l'armature extérieure à celui de l'ensemble tige + isolant ($d_2 = 12$ mm).

- A.1.1. Pour le condensateur de capacité C_1 , quelle est la relation entre sa hauteur L_1 et le niveau H?
- A.1.2. A l'aide de la relation donnant la capacité d'un condensateur cylindrique, montrer que la capacité C₁ est liée à H par la relation :

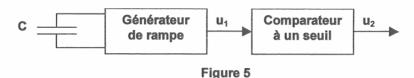
 $C_1 = 610 \times H$ avec C_1 en pF et H en mètre.

A.2. Étude du condensateur de capacité C2:

La tige de diamètre d_1 = 10 mm correspond à l'armature intérieure de ce condensateur. Le diélectrique est essentiellement de l'air (ϵ_R = 1). La cuve forme alors l'armature extérieure dont le diamètre est d_2 = 2,6 m.

- A.2.1. Pour le condensateur de capacité C_2 , exprimer sa hauteur L_2 en fonction du niveau H et de H_{MAX} .
- A.2.2. A l'aide de la relation donnant la capacité d'un condensateur cylindrique, montrer que la capacité C₂ est liée à H et H_{MAX} par la relation :

 $C_2 = 10 \times (H_{MAX} - H)$ avec C_2 en pF et H en mètre.

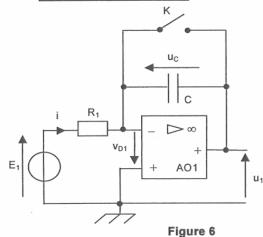

A.3. Étude du condensateur équivalent de capacité C :

A.3.1. Lorsque $0 \le H \le H_{MAX}$, avec $H_{MAX} = 2$ mètres, établir la relation numérique entre la capacité C du condensateur et le niveau H sous la forme :

 $C = a \times H + b$ avec C en pF et H en mètres.

- A.3.2. On souhaite que $C = 600 \times H + 1200$ avec C en pF et H en mètres. Pour obtenir ce résultat, il faut ajouter un condensateur de capacité fixe C_f en parallèle sur C. Quelle doit être la valeur de C_f ?
- A.3.3. Calculer alors la plage de variation de C correspondante à une variation de niveau H allant de 0 à 2 mètres.

B. Le générateur de signal

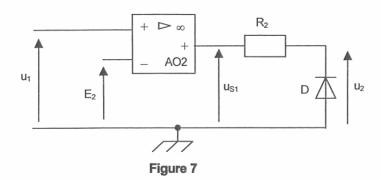


Le condensateur étudié précédemment est intégré dans un générateur de rampe. Le comparateur placé à la suite fournit une tension rectangulaire dont la valeur moyenne $<u_2>$ est proportionnelle à la capacité C du condensateur.

L'étude du montage se décomposera en trois parties :

- Étude du générateur de rampe,
- Étude du comparateur à un seuil,
- Élaboration de la relation entre <u2> et C.

B.1. Le générateur de rampe


K est un interrupteur parfait commandé périodiquement.

E₁ est une tension constante.

- B.1.1. Quel est le mode de fonctionnement de l'AO1 ? En déduire la valeur de v_{D1} .
- B.1.2. Établir une relation entre les tensions u₁ et u_C.
- B.1.3. L'interrupteur K est fermé. Que vaut la tension u_c ? En déduire la valeur de la tension u₁.
- B.1.4. À t = 0, K s'ouvre. On considère que $u_1(0) = 0$.
 - a) Exprimer i en fonction de E₁ et R₁.
 - b) Exprimer i en fonction de C et $\frac{du_c}{dt}$ (dérivée de u_C par rapport au temps).
 - c) Déduire l'expression de i en fonction de C et $\frac{du_1}{dt}$ (dérivée de u_1 par rapport au temps).
 - d) Exprimer $\frac{du_1}{dt}$ en fonction de E_1 , R_1 et C.
 - e) Montrer que la tension u_1 évolue selon la relation : $\mathbf{u_1(t)} = -\frac{E_1}{R_1.C} \times \mathbf{t}$
 - f) Quelle est l'allure de la tension u₁ au cours du temps ?
- B.1.5. Les variations de la tension u₁ sont représentées sur le **document réponse 1 page 13**.

Sur le même document, compléter les pointillés du bandeau « État de l'interrupteur K » par les mentions « Ouvert » ou « Fermé ».

B.2. Le comparateur à un seuil :

- B.2.1. Que vaut la tension u_{S1} si $u_1 > E_2$? En déduire l'état de la diode D et la valeur de la tension u_2 .
- B.2.2. Que vaut la tension u_{S1} si $u_1 < E_2$? En déduire l'état de la diode D et la valeur de la tension u_2 .
- B.2.3. E₂ est une tension continue négative. Elle est indiquée en pointillés sur le chronogramme de la tension u₁ (**document réponse 1 page 13**).
- B.2.4. Représenter l'évolution de la tension u_2 sur le **document réponse 1** en concordance de temps avec u_1 .

B.3. Élaboration de la relation entre <u₂> et C

Pour les applications numériques, on prendra les valeurs suivantes :

- Générateur de rampe : $E_1 = 5 \text{ V}$ $R_1 = 100 \text{ k}\Omega$ T = 240 µs
- Comparateur un seuil : E₂ = − 2,5 V
- B.3.1. Dans l'intervalle de temps [0, T] (T est la période de la tension u_1), on note t_1 l'instant pour lequel les tensions u_1 et E_2 sont égales de sorte que $u_1(t_1) = E_2$.

On rappelle que
$$u_1(t) = -\frac{E_1}{R_1 \cdot C} \times t$$
 (question B.1.4 e))

Exprimer t_1 en fonction de E_1 , R_1 , C et E_2 .

- B.3.2. Exprimer la valeur moyenne $< u_2 >$ de la tension u_2 en fonction de T, t_1 et V_{CC} .
- B.3.3. Montrer que $<u_2>$ est liée à la capacité C du condensateur par une relation du type : $<u_2>=k\times C$ Donner l'expression de k et vérifier que k = 2,5.10⁻³ V/pF

C. Le filtre

Le schéma du filtre est représenté figure 8. Son étude est d'abord menée en régime sinusoïdal de fréquence f. On adopte la notation complexe où \underline{U}_2 et \underline{U}_3 sont associées aux tensions u_2 et u_3 .

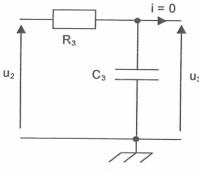
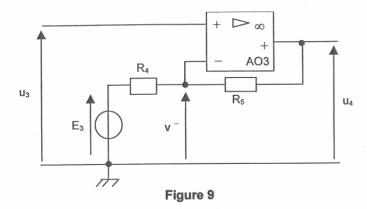


Figure 8

- **C.1.** Comment un condensateur se comporte-t-il en très basse fréquence, en très haute fréquence ?
- C.2. Montrer qu'il s'agit d'un filtre passe-bas.
- **C.3.** Établir la fonction de transfert $\underline{T} = \frac{U_3}{U_2}$ et la mettre sous la forme :

$$\underline{T} = \frac{1}{1 + j \frac{f}{fc}}$$

Donner l'expression de f_C en fonction de R₃ et C₃.


- C.4. La fréquence f_C de l'expression précédente représente la fréquence de coupure à 3 dB du filtre. Sachant que C₃ = 100 nF, calculer la valeur de R₃ permettant d'obtenir une fréquence de coupure f_C de 10 Hz.
- **C.6.** La tension u₂, appliquée à l'entrée du filtre, est maintenant une tension rectangulaire de fréquence f très supérieure à f_C dont la décomposition harmonique (limitée aux quatre premiers termes) peut s'écrire :

$$u_2(t) = \langle u_2 \rangle + \hat{U}_{21} \times \sin(\omega t + \theta_{21}) + \hat{U}_{23} \times \sin(3\omega t + \theta_{23})$$

Expliquer pourquoi on peut considérer $\mathbf{u}_3 = \langle \mathbf{u}_2 \rangle$.

D. Le circuit de mise en forme

La tension u₃ issue du filtre est appliquée à l'entrée du montage représenté figure 9.

- D.1. Sachant que le mode de fonctionnement du montage est linéaire, en déduire une relation simple entre les tensions u₃ et v⁻.
- **D.2.** Montrer que la tension de sortie u_4 dépend des tensions d'entrée u_3 et E_3 selon la relation : $u_4 = \frac{R_4 + R_5}{R_4} \times u_3 \frac{R_5}{R_4} \times E_3$
- **D.3.** Sachant que $R_4 = 1 k\Omega$, déterminer les valeurs à donner à R_5 et E_3 pour que l'expression précédente devienne : $\mathbf{u_4} = \mathbf{4} \times \mathbf{u_3} \mathbf{12}$

E. Le convertisseur analogique / numérique (CAN) et l'afficheur

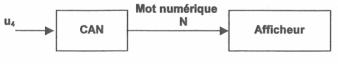
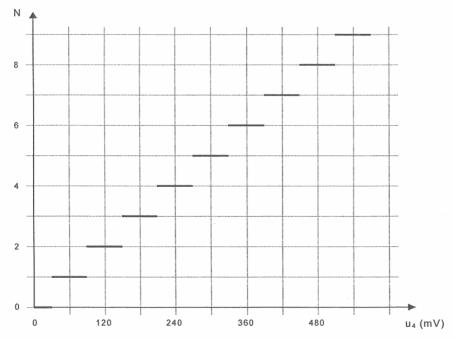


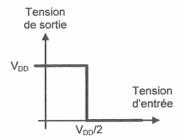
Figure 10

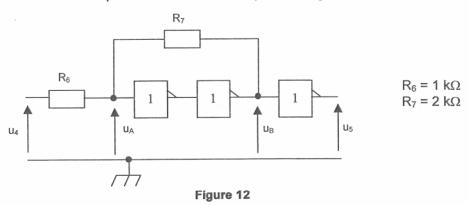

Pour numériser la tension u₄ issue de l'amplificateur, on emploie un CAN. On notera N la valeur décimale du mot numérique codé en binaire naturel.

On considère que l'afficheur placé à la suite du CAN indique sur 3 digits (avec point décimal fixe) la valeur de N comme le montre l'exemple suivant :

Pour N = 125, l'afficheur indique

Ce qui correspond à une hauteur H de 1,25 mètre dans le bac.


- **E.1.** Sachant que l'afficheur peut indiquer jusqu'à une hauteur de 2 mètres, montrer qu'un CAN 8 bits convient pour ce système.
- **E.2.** Le début de la caractéristique de transfert N = f(u₄) du convertisseur est représentée sur la figure 11 ci-après. Déterminer le quantum q.
- **E.3.** Déterminer, pour une tension u₄ de 4,5 V, le nombre N correspondant. En déduire l'indication de l'afficheur.


F. Le comparateur à 2 seuils

La tension u₄ issue de l'amplificateur est également appliquée à l'entrée d'un comparateur à 2 seuils réalisé à partir de portes logiques inverseuses.

La caractéristique de transfert d'une porte logique inverseuse est donnée cicontre.

Le schéma du comparateur à 2 seuils est représenté figure 12.

- **F.1.** Quelle est la valeur de la tension u_A qui provoque le basculement des sorties des portes logiques ?
- **F.2.** Exprimer la tension u_A en fonction de R₆, R₇, u₄ et u_B.
- **F.3.** En déduire l'expression de u₄ en fonction de R₆, R₇, u_A et u_B.
- **F.4.** Sachant que u_B peut prendre les valeurs 0 et V_{DD} , exprimer les tensions de seuils U_{Haut} (seuil haut) et U_{Bas} (seuil bas) du comparateur en fonction de R_6 , R_7 et V_{DD} .
- F.5. Calculer les valeurs numériques de U_{Haut} et U_{Bas}.
- **F.6.** A l'aide de la caractéristique $u_B = f(u_4)$ représentée sur le **document réponse 2 page 13**, tracer la caractéristique de transfert du comparateur $u_5 = f(u_4)$ sur le même document en fléchant le sens de parcours du cycle.

G. La commande de l'électrovanne

La tension u_5 provenant du comparateur permet de commander une électrovanne par l'intermédiaire d'un transistor bipolaire T fonctionnant en commutation comme le montre la figure 13.

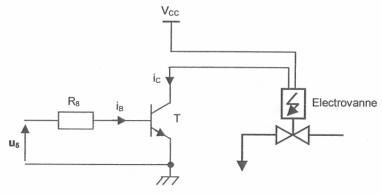


Figure 13

Caractéristiques de l'électrovanne :

- En l'absence d'alimentation, la vanne est fermée.
- Sous une tension de 12 V, la vanne s'ouvre et l'intensité du courant i_C absorbé vaut 100 mA.

Caractéristiques du transistor :

- V_{BE} = 0,7 V (transistor passant)
- Amplification en courant : $\beta = 100$
- V_{CE sat} = 0

La tension u₅ peut prendre les valeurs 0 V ou 12 V.

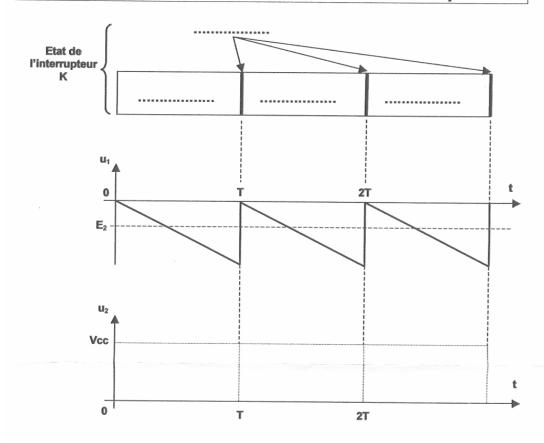
G.1. On considère $u_5 = 12 \text{ V}$.

On suppose que le transistor T est à l'état saturé.

- G.1.1. A quelle tension l'électrovanne est-elle soumise ?
- G.1.2. En déduire l'état de la vanne (ouverte ou fermée).
- G.1.3. Que vaut alors l'intensité du courant ic?
- G.1.4. On donne R_8 = 1 k Ω . En déduire l'intensité du courant i_B.
- G.1.5. L'hypothèse sur la saturation du transistor est-elle correcte ? Justifier.

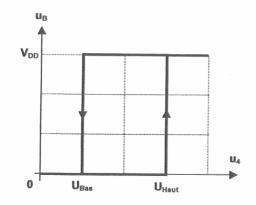
G.2. On considère $u_5 = 0 \text{ V}$.

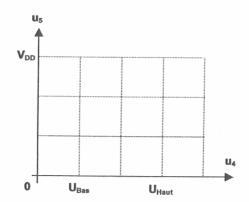
- G.2.1. Quel est l'état du transistor T?
- G.2.2. Que vaut alors l'intensité du courant i_C ?
- G.2.3. En déduire l'état de la vanne (ouverte ou fermée).


H. Synthèse

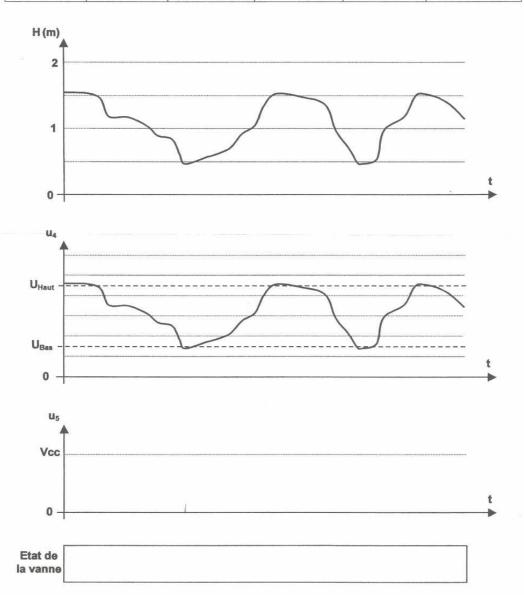
Cette synthèse vise à reprendre les résultats des différentes parties étudiées précédemment de façon à comprendre le fonctionnement global du système.

- H.1. A l'aide des résultats des parties A, B, C, D et E, compléter le tableau du document réponse 3 en haut de la page 14.
- H.2. L'évolution du niveau H de produit laitier dans le bac de conditionnement est représentée sur le document réponse 3 ainsi que la tension u₄ appliquée à l'entrée du comparateur. Représenter la tension de sortie du comparateur u₅ en concordance de temps avec u₄.
- H.3. Compléter le bandeau « État de la vanne » par les mentions « Ouverte » ou « Fermée » en correspondance avec la tension u₅.
- **H.4.** A l'aide d'une lecture graphique, déduire le niveau H₁ de produit laitier qui déclenche l'ouverture de la vanne et le niveau H₂ qui provoque la fermeture de la vanne.


Document réponse 1


à rendre avec la copie

Document réponse 2


à rendre avec la copie

Document réponse 3 à rendre avec la copie

H (m)	C (pF)	<u<sub>2> (V)</u<sub>	u ₄ (V)	N	Affichage
0					
0,5					
1,5					
2					

