Mesureur d'humidité

I - Générateur de signaux de fréquence fonction de l'humidité

1) le capteur d'humidité

Х	ΔΧ	ΔСн	Сн (рF)	$C = C_H + C_1$
70	0	0	500	650
0	-70	350	850	1000
100	30	-150	350	500

 C_H de la forme C_H = -a.x + C_o avec a = 5 pF

pour x=70
$$C_H = 500 \text{ pF} \Rightarrow C_o = 850 \text{ pF}.$$

$$C = C_1 + C_H \Rightarrow C = -5x + 1000$$

2) Génération des oscillations

a) $v_A = V_{dd}/2 \Rightarrow la$ sortie v_B est au niveau « 1 » ou « 0 » $u_1 = 12$ V (niveau « 1 ») l'entrée v_B est au niveau « 0 » $\Rightarrow v_B(0^-) = 0$ V

b)
$$t = 0^+$$
 $V_B(0^+) = V_{dd}$ $U_c(0^+) = U_v(0^-) = V_{dd}/2$ $V_A = -U_c = -V_{dd}/2$

c)
$$u_1 = v_B + R_{1.i} + u_c$$

d)
$$i = C.du_o/dt$$

 $u_1 = v_B + R_1C.du_o/dt + u_c$
 $0 = V_{dd} + R_1.C.d_o/dt + u_c$
 $R_1.C.du_o/dt + u_c = -V_{dd}$

e) la tension aux bornes du condensateur décroit et tendrait vers – V_{dd}

f)
$$v_A = -u_c$$
 tant que $u_1 = 0$ $\Rightarrow v_A$ croit et tendrait vers + V_{dd} avec $v_a(0^+) = -V_{dd}/2$ quand v_A reprend la valeur de + $V_{dd}/2$ le système bascule (car v_B passe à 0 et u_1 à + V_{dd})

g) instant
$$t_1^ u_1 = 0$$
 $u_c = -v_A = -V_{dd}/2 = -6 V$ $v_A = V_{dd}/2 = 6 V$ instant t_1^+ $u_1 = + 12 V$ $u_c = -V_{dd}/2 = -6 V$ $v_A = u_1 - u_c = 3/2 V_{dd} = 18 V$

3) oscillations établies

a) T = 2,2 R₁(-5x + 1000) = (154 – 0,77.x).10⁻⁶ si T est en
$$\mu$$
s \Rightarrow T = (154 + 0,77.x)

pour C = 650 pF
$$\Rightarrow$$
 T = (154 – 0,77.70) = 100 μ s

b) voir feuille annexe n°1

II - Convertisseur fréquence-tension

1) amplificateur AO1

AO1 est un suiveur : l'étage astable n'st pas changé u₂ = u₁

2) NE 555 Voir feuille annexe n°2

$$\langle u_3 \rangle = Aire/T = 7/10.V_{dd} = 8,4 V$$

3) Étude du filtre

a) transmittance complexe

$$\underline{A} = (-R_4/R_3).1/(1 + jR_4.C_4.\omega)$$

Module
$$A = (R_4/R_3) \cdot \frac{1}{\sqrt{1 + (R_4 C_4 \omega)^2}}$$

- b) A est maximum pour f = 0
- $A_0 = R_4/R_3 = 1$
- filtre passe-bas
- $\omega_c = 1/R_4.C_4$ $f_c = 1/2\pi R_4 C_4 = 159 \text{ Hz}$

c) T = 100
$$\mu$$
s \Rightarrow f = 10 kHz >> f_c
donc u₅ est la valeur moyenne de u₄ u₅ = -u₄ = - u₃ = -8,4 V

$$u_5 = -u_4 = -u_3 = -8.4 \text{ V}$$

III - Tension de référence

en A :
$$u_R = - V_{cc}[(P + R_6)/(P + R_6 + R_5)]$$

$$u_R = - 10,9 \text{ V}$$

en B:
$$u_R = -V_{cc} [R_6/(P + R_6 + R_5)]$$

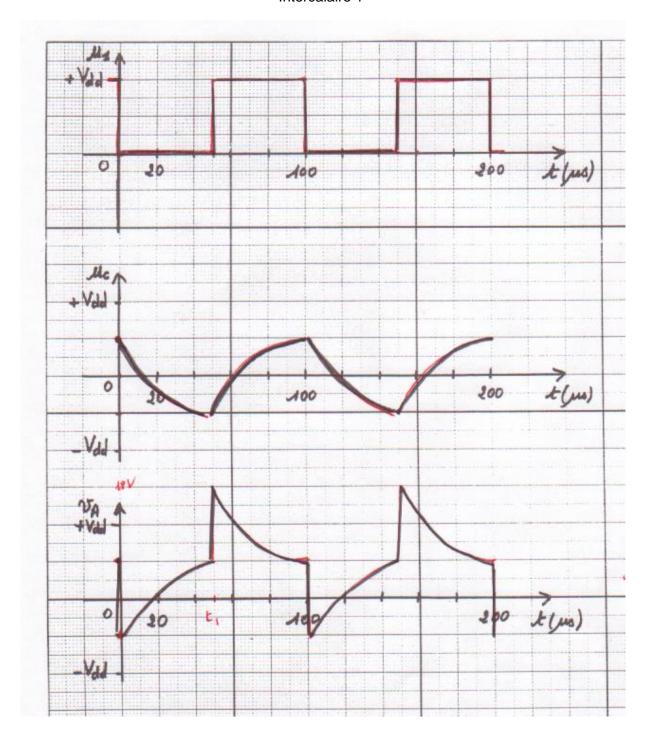
$$u_R = -5.3 \text{ V}$$

IV - Amplificateur de différence

$$1) \qquad u_{BC} = u_5 - u_R$$

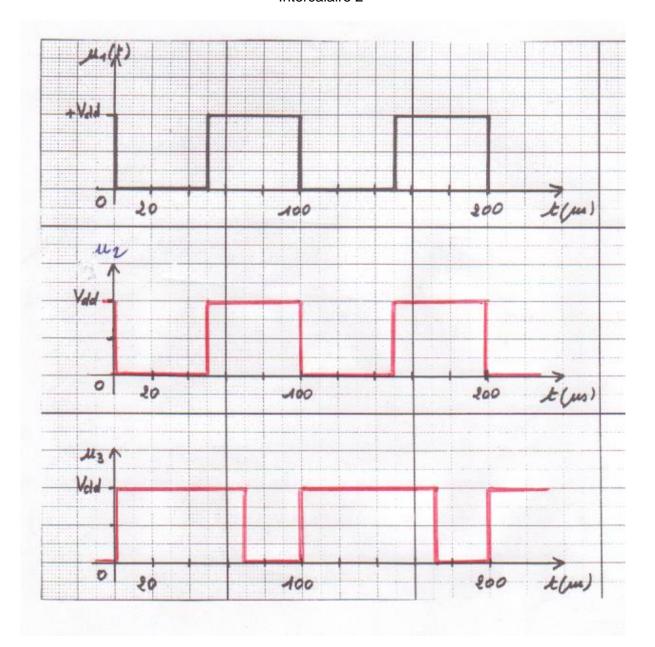
$$i = (u_5 - u_R)/R_7$$

$$u_{AD} = 3.(u_5 - u_R)$$


2)
$$u_6 = -3.(u_5 - u_R)$$

 $U_6 = -3.(-8,4 + 7,3) = 3,3 \text{ V}$

V - Signal


$$u_6 = 3.3 \text{ V} > U_{ref}$$
 \Rightarrow $u_7 = + V_{cc} = + V_{sat}$

la diode émet un signal lumineux

Intercalaire 1

Intercalaire 2

